Pada tulisan ini Saya akan share mengenai pembuktian rumus sisipan barisan aritmatika. Di situs lain jarang sekali rumus ini dibuktikan, kebanyakan dari mereka langsung memberikan formulanya. Tapi disini Saya akan berikan pembuktian sederhananya, biar Kamu makin cerdas dan gak asal lagi menggunakan rumus. Siap? Let's go!
Sebenarnya, apa sih yang dimaksud sisipan barisan aritmatika itu?
Jadi gini, misalkan kita punya sebuah barisan aritmatika
Biar makin paham lagi, coba perhatikan contoh dibawah ini!
Diketahui barisan aritmatika dengan banyak sukunya
Barisan baru ini banyak sukunya ada
Jadi udah paham yaa maksudnya sisipan barisan aritmatika itu kaya gimana. Intinya, sisipan barisan aritmatika adalah barisan aritmatika baru yang didapatkan dari barisan aritmatika lama dengan cara menyisipkan
Nah sekarang yang akan Kita pelajari itu bagaimana menentukan rumus beda baru dan banyak suku baru pada sisipan barisan aritmatika. Kalau banyak sukunya cuman 3 atau 4, Kita bisa mencarinya dengan manual. Tapi bagaimana kalau banyak sukunya 100? Pastinya puyeng kan?
Baik, Kita mulai pencarian rumusnya. Saya coba dari yang sederhana dulu, misalkan diantara dua suku yaitu
Coba perhatikan!
Setiap suku barisan aritmatika (kecuali suku pertama) merupakan penjumlahan suku sebelumnya dengan beda baru. Berarti jika disisipkan
Dari sini Kita dapatkan rumusan seperti berikut.
Kita tahu bahwa
Jadi kesimpulannya, rumus beda dari barisan aritmatika baru adalah seperti ini.
Keterangan:
Sekarang Kita coba pakai rumus ini untuk menjawab contoh soal sebelumnya yaitu barisan aritmatika
Jawab:
Diketahui
terbukti
Oke, satu rumus selesai. Selanjutnya adalah rumusan banyak suku untuk barisan baru. Agar berbeda, Saya memisalkan suku-suku baru dengan sebuah simbol
Percobaan 1
Percobaan 2
Percobaan 3
Percobaan 4
Dari percobaan 3 dan percobaan 4, nilai
Coba perhatikan deh! Koefisien
Jadi rumus banyaknya suku barisan aritmatika baru adalah sebagai berikut:
Keterangan:
Berikut adalah contoh soal sisipan barisan aritmatika, perhatikan dengan baik!
Contoh 1
Diantara bilangan 20 dan 116 disisipkan 11 bilangan, sehingga terjadi sebuah barisan aritmatika baru. Tentukanlah:
a. Beda barisan aritmatika baru
b. Suku tengah barisan aritmatika baru dan letaknya
Jawab:
a. Diketahui
Jadi, beda pada barisan aritmatika baru adalah 8.
b. Diketahui
Kita cari dulu
Jadi, suku tengah pada barisan aritmatika baru adalah
Contoh 2
Diberikan barisan aritmatika
Diatara dua suku yang berurutan disisipkan 3 bilangan sehingga terbentuk barisan aritmatika yang baru. Tentukanlah:
a. Beda pada barisan aritmatika baru.
b. Suku ke 21 dari barisan aritmatika baru.
Jawab:
a. Diketahui
b. Diketahui
Itulah pembahasan lengkap mengenai pembuktian rumus dan contoh soal sisipan barisan aritmatika. Jika bermanfaat share tulisan ini!
Posting Komentar